

A Hybrid Cable-Driven Robot for Non-Destructive Leafy Plant Monitoring and Mass Estimation using Structure from Motion

Gerry Chen¹, Harsh Muriki¹, Andrew Sharkey², Cédric Pradalier³, Yongsheng Chen², Frank Dellaert¹

¹Institute for Robotics and Intelligent Machines, College of Computing, Georgia Institute of Technology ²N.E.W. Center for Agricultural Technology, Civil and Environmental Engineering, Georgia Institute of Technology ³School of Interactive Computing, CNRS IRL 2958, Georgia Tech Lorraine

Georgia Nutrients, Energy, and Water Tech Center for Agriculture Technology

Background

Motivation	Farmers want feedback to understand how their plants
	are growing
	Researchers want data to develop plant growth models
Existing	Cut down plant and send to lab for analysis
Methods	Measuring biomass and nutrient content are
	destructive and expensive
Current	Researchers need very large sample sizes to compensate
Limitations	for destructive loss and statistical variation
	Cannot track a single plant over time since the first
	measurement is destructive
Proposed	measurement is destructive Non-destructively estimate useful metrics using

Prior Works: Non-Destructive Phenotyping

PlantEye F500

RGB Camera(s)

- Single Camera
- Stereo Camera
- Multi-camera rig Depth Camera(s)
- IR-based depth (e.g. Kinect)
- Structured Light (non-IR)
- Time-of-flight (ToF)
- Light field (Plenoptic)

Imaging Sensors

- Multi-spectral Imaging
- IR (Thermal, NIR, VNIR) ➤ Water, N, P, etc.
- > Disease, salt-stress
- Chlorophyll-Fluorescence
- Tomographic (MRI, CT)
 - > Hidden morphology

Limitations

Current approaches exhibit a tradeoff between high-throughput phenotyping vs. high quality/resolution data. For example, [1] uses a push cart to achieve high-throughput, but doesn't image entire plants. Similarly, [2] uses a tractor for high-throughput, but produces coarse 3D reconstructions of entire plants insufficient to analyze plant morphology. Conversely, full-plant dense reconstruction approaches have not been shown in scalable, high-throughput settings (e.g. [3]).

Current approaches also struggle with leafy plants (e.g. lettuce)

System Overview

64 Raw Images

3D Reconstruction

Estimate Plant State

- Wet Mass • Dry Mass
- % Nitrogen
- % Phosphorous
- ...

Data Collection

- 71 plants, 64 photos per plant, every day for 6 weeks
- Harvest 6 plants, 2 times per week
- Measure Wet Mass, Dry Mass, and USDA Nutrition Assay

Throughput

2500 photos/hour, 64 photos/plant, 100% autonomous 24/7 Ours: 56 plants @ 350 cm²/plant (infinitely scalable in theory) Baseline 3: 300 photos/hour with 2 skilled human operators

Future Work

Temporal Association: track plant growth over time by aligning 3D models across growth cycle

Plant Organ Segmentation: identify instances of each plant organ (e.g. leaves)

Plant Modelling: create a predictive model of plant growth dynamics

Model Predictive Control: Compute optimal fertilizer and env. inputs to maximize crop yield Multi-spectral Imaging: for improved nutrient content estimation

Selected References

[1] Y. Song, C. A. Glasbey, G. Polder, and G. W. A. M. van der Heijden, "Non-destructive automatic leaf area measurements by combining stereo and time-of-flight images," IET Computer Vision, vol. 8, no. 5, pp. 391–403, 2014. [2] J. Dong, J. G. Burnham, B. Boots, G. Rains and F. Dellaert, "4D crop monitoring: Spatio-temporal reconstruction for agriculture," 2017 IEEE International Conference on Robotics and Automation (ICRA), 2017, pp. 3878-3885, doi: 10.1109/ICRA.2017.7989447.

[3] A. Chaudhury et al., "Computer Vision Based Autonomous Robotic System for 3D Plant Growth Measurement," 2015 12th Conference on Computer and Robot Vision, 2015, pp. 290-296, doi: 10.1109/CRV.2015.45.

Results

Methods

- Ours Mesh to **Volume** to Mass
- Ours Mesh to **Surface Area** to Mass
- Baseline 1: Top-down photo only, **Projected Area** to Mass
- Baseline 2: Simulated UAV Imagery, Mesh to Vol/S.A. to Mass
- Baseline 3: Arm-only, no cable robot, qualitative comparison

Linear Regression

Estimation Metric	$GT: \mathbb{R}^{n}$	Fresh Mass	GT: Dry Mass	
Estimation Metric	$R^2 \uparrow$	MAE (g) \downarrow	$R^2 \uparrow$	MAE (g) \downarrow
Surface Area (ours)	0.845	11.216	0.846	$\boldsymbol{0.586}$
Volume (ours)	0.833	11.671	0.832	0.617
Baseline 1: Projected Area	0.537	19.976	0.505	1.084
Baseline 2: Surface Area	0.292	26.049	0.285	1.401
Baseline 2: Volume	0.277	26.439	0.269	1.422

Point Cloud Occlusion

	Estimation Method	Occlusion coefficient, $k (g^{-1}) \downarrow$			
Estimation Method		GT: Fresh Mass	GT: Dry Mas		
	Surface Area	0.236	$\boldsymbol{0.593}$		
	Volume	0.261	0.659		
	Baseline 1: Projected Area	0.519	0.883		
	Baseline 2: Surface Area	0.333	0.680		
	Baseline 2: Volume	0.350	0.743		
		!			

Statistical Significance

	p-value	$e(\downarrow)$ for	p-value (\downarrow) for
Metric	Age Disci	rimination	Nutrient Schedule
	Exp. 1	Exp. 2	Discrimination
Fresh Mass (GT)	0.00156	0.00037	0.00284
Dry Mass (GT)	0.00137	0.00263	0.00288
Surface Area (ours)	0.00219	0.00352	0.03134
Volume (ours)	0.00204	0.00338	0.03766
Baseline 1: Projected Area	0.00086	0.02661	0.32745
Baseline 2: Surface Area	0.00287	0.31166	0.32066
Baseline 2: Volume	0.00265	0.26535	0.28106
	•		'

Is our data good enough for scientists to use in developing plant growth models?

> Metric: For a given hypothesis, evaluate the statistical significance using GT value vs our estimate

Qualitative Comparison

Occlusions

Imaging Pose Consistency

Example Point Clouds

