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Abstract— The small scale of urban farms and the commer-
cial availability of low-cost robots (such as the FarmBot) that
automate simple tending tasks enable an accessible platform
for plant phenotyping. We have used a FarmBot with a
custom camera end-effector to estimate strawberry plant flower
pose (for robotic pollination) from acquired 3D point cloud
models. We describe a novel algorithm that translates individual
occupancy grids along orthogonal axes of a point cloud to
obtain 2D images corresponding to the six viewpoints. For
each image, 2D object detection models for flowers are used
to identify 2D bounding boxes which can be converted into
the 3D space to extract flower point clouds. Pose estimation is
performed by fitting three shapes (superellipsoids, paraboloids
and planes) to the flower point clouds and compared with
manually labeled ground truth. Our method successfully finds
approximately 80% of flowers scanned using our customized
FarmBot platform and has a mean flower pose error of
7.7 degrees, which is sufficient for robotic pollination and
rivals previous results. All code will be made available at
https://github.com/harshmuriki/flowerPose.git.

I. INTRODUCTION

Urban farms [1] provide healthy food to local communities
and can serve as platforms for education and sustainability.
Unlike their rural counterparts, urban farms are usually small
in scale and commercially available robotic systems such as
the FarmBot [2] have been developed to help automate basic
cultivation tasks such as seeding, weeding, and watering.

The FarmBot (Fig. 1) is a scalable XYZ gantry robot that
traverses linear rails, covering an arable area of up to 18 m2

(0.0044 acre). Such a platform makes it feasible to reach and
potentially interact with each and every plant growing within
its volumetric workspace. We have used the FarmBot with a
custom two degrees-of-freedom (DOF) camera end-effector
to explore phenotyping for small-scale urban farms (though
our methodology and results are applicable to other forms of
controlled environment agriculture, such as indoor farming).
Specifically, this paper focuses on flower pose (position
and orientation) estimation as a canonical phenotyping task,
which is critical for robotic pollination.

Pollination is the transfer of pollen grains from the male
stamen to the female pistil, either from one flower to another
(cross-pollination) or from the same flower to itself (self-
pollination). The pistil is located in the center of the flower’s
petals, extending outwards roughly orthogonal to their sur-
face, and surrounded by multiple stamen (each comprised of
a filament supporting a pollen grain). Knowledge of the pose
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Fig. 1: FarmBot Genesis v1.7 tending a raised urban garden
bed with strawberry plants in foreground. Inset: custom 2-
DOF camera end-effector. The cylinder/dome plant scanning
path for the camera is also schematically shown.

of the flower petals therefore enables access to the stamen
and pistil. Robotic pollination can be used when natural
pollinators such as bees are declining or unsuitable (as is the
case for indoor farms). Yuan et al. [3] considered automated
pollination for greenhouse tomatoes using a mobile robot arm
platform and binocular vision for flower localization. Smith
et al. [4], Strader et al. [5], Yang et al. [6], and Ohi et al. [7]
have implemented mobile robot arm platforms (including a
multi-arm robot) for pollination of self-pollinating bramble
plants in a greenhouse environment. Flower detection is
performed based on trained models (including YOLOv8 [8])
using RGB images. Three orientation classes (flower facing
left, center and right) were learned in order to estimate flower
pose for subsequent contact interaction between pollinator
tool and flower center (containing the stamen and pistil).
Yang et al. [9] developed a similar approach, detecting
forsythia flower pistils directly based on stereo images, while
Ahmad et al. [10] worked with watermelons and used nine
flower orientation classes (center and eight radially outward-
pointing directions). Finally, Hulens et al. [11] developed an
autonomous drone for flower pollination that trains its deep
learning models on a mixed dataset of real, artificial and
computer-rendered flowers at 10-degree angular increments
about a vertical axis.

Prior research efforts in robotic pollination use discrete 2D
images of flowers to infer orientation, with none providing
a quantitative evaluation of angle estimation accuracy. We
leverage the capability of a customized FarmBot to reach
arbitrary poses within a volumetric workspace enclosing
a raised urban garden bed to autonomously generate 3D
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models of flowering strawberry plants. A novel method is
described to efficiently extract point clouds corresponding to
the strawberry flowers for subsequent spatial pose estimation.
Our results are evaluated with respect to known ground truth
pose values and will be used in our own work on robotic
pollination [12] that relies on precise knowledge of flower
pose.

II. METHOD

A. Hardware Platform

We use a customized FarmBot Genesis v1.7 as our data
acquisition platform. The XYZ gantry-type robot has been
mounted onto a 5 ft × 10 ft raised garden bed (Fig. 1). A
key feature of FarmBot is its universal tool mount (UTM),
which acts as the robot’s wrist that interfaces with cus-
tom tools via 12 pogo pins. The tools are held in place
with neodymium magnets. The UTM can be positioned in
the FarmBot’s workspace using software commands issued
through Farmbot’s Python API [13].

The FarmBot’s control system is composed of a Raspberry
Pi [14] and a custom ATmega2560-based microcontroller
(Farmduino). The Raspberry Pi runs FarmBot OS, which
receives instructions from the FarmBot API via a cloud
server. The Raspberry Pi in turn sends instructions to the
Farmduino, which enables I/O pins to control different parts
of the robot (twelve of these I/O pins connect with the UTM
pogo pins).

A custom 2-DOF camera end-effector has been designed
to be mounted onto the UTM, enabling yaw and pitch
rotations actuated via two high-torque 35 kg waterproof
servo motors that are controlled using digital output pins
D5 and D6 on the Farmduino. The camera is an Arducam
4K 8MP IMX219 USB Autofocus Camera with 1280 × 720
video resolution. To interface with the Arducam (via USB)
and store recorded images/videos, we have added a separate
Raspberry Pi 5 to the hardware set-up.

B. Data Acquisition

Our approach to estimating flower pose is based on using
autonomously generated 3D models of the supporting plant.
We have chosen flowering strawberry plants as the specimen
of interest, with artificial white flowers used to augment our
sample size. Based on images taken of the sample plant from
multiple camera poses, we use photogrammetry to stitch
them together into a spatial model.

We have programmed the FarmBot’s camera end-effector
path to revolve around the plant in two parts: a cylinder to
capture circumferential details topped by a hemisphere to
capture top-down details (refer to the schematic in Fig. 1).
The camera, set at a fixed manual exposure, continuously
records a video while traversing this scanning path. For the
cylinder portion, the 2-DOF end-effector is actuated so that
the camera points towards the cylinder’s center-line, while for
the half-dome it points towards the spherical center aligned
with radial lines. In order to take advantage of the auto-
focus capability of the Arducam, the robot pauses at regular

Fig. 2: Rendered (left) and wireframe (right) 3D mesh
model of example flowering strawberry plant outputted from
Polycam based on photogrammetry.

intervals along its scanning path to help ensure sharp and
well-lit images of the flowering plant.

Once a video sequence of the flowering strawberry plant
has been recorded (at 30 frames per second), images are
extracted frame-by-frame. As an example: for a plant with
diameter 15 inches and height 12 inches, our scanning path
takes approximately 20 minutes to execute. This yields ap-
proximately 36,000 image frames. The images are separated
into N equally sized sequential bins, where N is the number
of images to be used for photogrammetry stitching. Each bin
corresponds to a segment of the scanning path, which ensures
coverage of the entire plant. For each bin, Laplacian filtering
[15] is performed on the central area of each image to obtain
an average sharpness value, giving us a quality score to help
choose the best image in the bin.

C. 3D Model Generation

We have used a commercially available off-the-shelf software
tool called Polycam [16] to generate 3D photogrammetry
models of the scanned flowering strawberry plants using the
N selected images. Through empirical testing, we noticed
that 200 images achieved dense point clouds with an average
of 62,500 vertices, commensurate with the scale and detail
of strawberry plants.

Additional images did not result in better quality point
clouds. We used RAW mode and enabled the Sequential
option (since the images we captured were spatially ordered).
To further increase the detail of the point cloud, we used
Polycam’s Remesh feature, maximized the Polygon count as
well as Texture resolution, and set the topology to Uniform.
Fig. 2 shows an example 3D model output from Polycam,
which includes the strawberry plant and the underlying soil
surface. We note that the flowers in our raised urban garden
bed have white petals and yellow pistils.

D. Translating Occupancy Grid Method

There has been extensive research on extracting 3D objects
from point clouds, which can be broadly categorized into
two main approaches: utilizing the points (or voxels) directly
or projecting the points onto 2D planes. 3D deep learning
models based on neural networks or transformer model
architectures have been employed to work directly with
points, like those discussed in Wu et al. [17] , Kolodiazhny
et al. [18] and Qi et al. [19]. However, one major limitation
of this method is that their accuracy strongly depends on
the dataset used during training. If a new class of objects is
introduced, the model often requires re-training. This process



Fig. 3: Schematic of the translating occupancy grid that
maps 3D points onto a 2D image, shown for one orthogonal
viewpoint direction.

is computationally intensive and can be costly, particularly
when dealing with large datasets or complex models. Addi-
tionally, they require a very large amount of runtime because
of the amount of data they work with.

Algorithm 1 Pseudocode for Translating Occupancy Grid
Method
TranslatingOccupancyGridMethod()
Data: Pointcloud
Result: Array of 3D coordinates of detected strawberry flowers
orthogonalSides = initialization(Pointcloud)
Pointcloud = threshold(Pointcloud) {Remove ground
points using bounding boxes.}
for each side in orthogonalSides do

2Dimage, 2Dgrid, 2Ddata =
get2dImagefrom3dPointcloud(Pointcloud, side)

boundingBoxes = objectDetection(2Dimage)
allData = []
for each boundingBox in boundingBoxes do

3Ddata = get3DPointcloudfrom2dImage(
boundingBox, 2Dgrid, 2Ddata)

allData.append(3Ddata)
end
newPcd = New pointcloud with allData points

end
newPcd ← apply statistical outlier removal

and radius outlier removal
boundingBoxes, segments = DBSCAN(newPcd)
return segments

Utilizing a projection-based system where point clouds
are projected directly onto 2D planes addresses some of
these limitations. For example, Boulch et al. [20] employed
manually captured 2D snapshots of different views of the
point cloud to segment objects. In contrast, Lahoud et al.
[21] use a single RGB-D image to estimate the location
of an object. Another approach by Yang et al. [22] uses a
mini T-net model to extract features from 3D point clouds
and project them onto 2D planes. Lyu et al. [23] uses
Delaunary triangulation to convert 3D point clouds to 2D
images. However, these approaches perform best when the
detected object constitutes a large fraction of the point cloud
with relatively little external noise. Furthermore, some of
these processes are either very laborious to execute [20] or
have low accuracy. Moreover, the downstream task of pose
estimation necessitates 3D positional information, which

cannot be derived solely from 2D images and detections;
hence, generating and processing a point cloud is essential.

Algorithm 2 Pseudocode for 3D to 2D Conversion
get2dImagefrom3dPointcloud()
Data: Pointcloud, side
Result: Array of image, grid and data
resolution = 10 {Determined via trial & error.}
width, height = 2D Image.shape
N, M = width + 2 × resolution, height + 2 ×

resolution {Adding the extra 2× resolution to
allow for processing of edge pixels.}

checkGrid = Array of zeros of shape (N,M)
{Indicates whether a particular grid index is
filled or empty.}

grid = Array of zeros of shape (N,M)
image = A blank grayscale RGB image
data = {empty dictionary} {Contains key-value

pairs of unique identifiers, where each key is
associated with the color of a voxel and its 3D
location.}

axis1, axis2 = axes {For a given side, coordinate
axes along which we perform the operations.}

points = sort(points, axis3)
colors = sort(colors, axis3) {Colors of the correspond-
ing points}
for each (idx,coords) in points do

coords norm = normalize coords to [-1,1]
along (axis1, axis2) {Map to 2D image.}

index1 = (coords norm.axis1 * width +
(width / 2)) + resolution

index2 = (coords norm.axis2 * height +
(height / 2)) + resolution

if not checkGrid[index1,index2] then
checkGrid[index1,index2] = 1
data[idx] = [colors[idx], coords]
grid[index1,index2] = idx
image[index1,index2] = colors[idx]
Toggle all 2D points around [index1,

index2] with a radius of ± resolution
to 1 in checkGrid

end
end
return image, grid, data

We have developed a novel method for computing 3D
bounding boxes around flowers in the point cloud of the
strawberry plant generated in the previous section, sum-
marized in Algorithm 1. Six orthogonal snapshots were
captured, each representing different perspectives of the
plant, using open-source tools such as Open3d [24], OpenCV
[25] and Numpy [26]. This allowed us to capture all the
visible flowers from every side of the plant. Using these
six orthogonal sides, we had six directions along three
orthogonal axes: X , −X , Y , −Y , Z, and −Z. We then used
a 2D occupancy grid as seen in Fig. 3 that moves along each
of these 6 directions. Each square element within the grid
was assigned based on the first 3D point it encountered, as
illustrated in the progression from location 1 to 4 in Fig. 3.
The occupancy grid from location 4 (upon exiting the point
cloud) is the resulting 2D image. We note that each detected
element in the occupancy grid retains an associated “depth”
along the viewpoint direction.

This process is detailed in Algorithm 2. It is used to



generate six 2D color images, illustrated in Fig. 4 as the
sides of a cube (we used square occupancy grids). Each grid
element is essentially a pixel. An important detail to note
is the resolution parameter in Algorithm 2. This parameter
defines the radius, in pixels, around each detected (occupied)
pixel. All pixels within this radius are colored the same
color as the detected pixel. The resolution can be adjusted to
modify the 2D image’s granularity. Our empirical evidence
demonstrates that capturing high-resolution snapshots (e.g.,
7000 × 7000 pixels) of point clouds containing numerous
objects, such as plants, produces highly detailed images with
minimal pixelation.

Algorithm 3 Pseudocode for 2D to 3D Conversion
get3DPointcloudfrom2dImage()
Data: boundingBox, grid, data
Result: Array of 3D points and colors of only flowers
x min, x max, y min, y max = boundingBox
colors, points = []
for each x in range(x min,x max,1) do

for each y in range(y min,y max,1) do
(colors, points) = (colors, points) ∪

(colors, 3D coordinate at (x,y))
end

end
return (points, colors)

Multiple object detection algorithms such as pre-trained
CNNs, color-based thresholding, etc. can be employed due
to the modular nature of the process. We decided to leverage
pre-trained object detection models like YOLOv10 [27] and
Roboflow 3.0 Object Detection [28], fine-tuning them to
detect white strawberry flowers. As Algorithm 1 illustrates,
each image generates multiple 2D bounding boxes since
there are numerous detected flowers. Since Algorithm 2
mapped each pixel to its corresponding 3D coordinate, we
can use these 2D bounding boxes to extract the 3D points
associated with the detected flowers, as described in Algo-
rithm 3. We then merge all of these 3D points into a unified
3D point cloud and apply density-based spatial clustering
of applications with noise (DBSCAN) [29] clustering based
on spatial location to segment and filter the flowers from the
noise. Through domain knowledge and iterative experimenta-
tion, we set the parameters eps and min points to 0.01 and 20
respectively. Smaller eps leads to fragmented clusters while
higher min points reduces sensitivity to noise and excludes
some of the smaller clusters. This resulted in the creation
of 3D bounding cuboids around the strawberry flowers, as
shown in Fig. 5 (bottom left). This method is computationally
faster and more flexible than aforementioned work.

E. Flower Pose Estimation

1) Post-Processing: Using the bounding cuboids out-
putted from the Translating Occupancy Grid Method, we
obtain the point clouds for each of the flowers found in the
strawberry plant. For each flower, we seek to extract the
points in the point cloud corresponding to the petals and the
pistil separately, since flower poses are intuited from how
the corolla (the petals collectively) opens up and from the
position of the pistil. Since the strawberry flowers used have

Fig. 4: Images resulting from the translating occupancy grid
method applied along six orthogonal views.

Fig. 5: Illustration of proceeding from bounding cuboids
from translating occupancy grid method to flower point cloud
(minus pistils, etc.).

distinct white petals and yellow pistils, we accomplish this
by converting the point colors into the hue, saturation, value
(HSV) color space and applying separate threshold filters for
the petals and the pistil. This method successfully segments
out the petals. However, due to the yellowish-green color of
the flower stems, the threshold filter for the pistil includes
some spurious points from the base of the flower.

To address this issue, we perform DBSCAN clustering
on the result of the pistil threshold filter, with each of the
clusters generated being potential candidates for the pistil.
DBSCAN groups together points that are close to each other
based on two parameters: a distance metric and the minimum
number of points contained in each cluster. These parameters
have been set keeping real world flowers in mind. Based on
the assumption that the flower pistil should be located in the
middle of the petals, we select the cluster whose centroid has
the shortest Euclidean distance to the centroid of the petal
point cloud obtained in the previous step. Fig. 5 shows the
entire process of extracting the petals and pistil for each of
the flowers.



2) Shape Fitting: The extracted petal points will be used
to determine flower pose. After centering the petal point
cloud at its centroid (origin), we proceed to fit quadric
surfaces. Three candidate surfaces were investigated: superel-
lipsoid (Eq. 1), paraboloid (z = (x/a)2 + (y/b)2) and plane
(ax+ by + cz = d).
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The motivation for fitting a superellipsoid comes from
the observation that the petal point cloud often traces out
part of a rounded and closed surface which is similar to
that of an ellipsoid. Superellipsoids are the generalization
of an ellipsoid that can be additionally deformed using
two introduced parameters, adding greater shape-fitting flex-
ibility (e.g., see [30]–[32]). A superellipsoid is fit onto
the petal point cloud by performing constrained nonlinear
least-squares optimization on parameters a, b, c, ϵ1, and
ϵ2 as well as on Euler angles ϕ, θ and ψ that define the
spatial orientation of the superellipsoid. The optimization
is performed by the trust region reflective algorithm [33]
which solves a system of equations motivated by a first-
order optimality condition. The bounds on the parameters
are: 0 ≤ a, b, c ≤ 0.1 and 0.9 ≤ ϵ1, ϵ2 ≤ 1.1. Parameters a, b
and c are bounded to be smaller than 0.1 m to reflect the size
of real-life flowers, while ϵ1 and ϵ2 are bounded so that the
shape of the superellipsoid is similar to one that empirically
yields the best result compared to having no bounds or to
directly fitting an ellipsoid.

The next step is to determine which of the six directions in
the coordinate frame of the superellipsoid (two for each axis)
is the pose estimate for the flower. We achieve this by finding
the minimum of a, b and c (which, similar to an ellipsoid,
describe how much the superellipsoid is stretched in each
axis) to find the shortest axis spanned by the superellipsoid.
This axis would be parallel to the pose estimate. Finally,
to determine the correct direction along that axis, we use
the pistil point cloud extracted in the previous step. Since
the pistil should always be on the side of the flower where
the corolla opens up (opposite the stem), we define a vector
originating from the centroid of the entire flower point cloud
to the centroid of the pistil point cloud. The direction whose
dot product with the aforementioned vector is positive is
chosen as the estimated flower pose.

The motivation for fitting a paraboloid is the observation
that the petals also had a tendency to curve upward along the
sides of the flower. The advantage of using a paraboloid over
a superellipsoid is the fact that it is directional, making it a
trivial task to determine the pose estimate once the fitting is
performed. Similar to the superellipsoid, we fit a paraboloid
onto the petal point cloud by performing unconstrained
nonlinear least-squares optimization on parameters a and
b, as well as Euler angles ϕ, θ and ψ. The Levenberg-
Marquardt nonlinear least-squares algorithm [34] is used
for optimization. Since the paraboloid is directional along
the z-axis of its local coordinate frame, the pose estimate

Fig. 6: Example of ground truth pose as well as superellip-
soid, paraboloid and plane pose estimates on a flower.

is simply the direction of the positive z-axis transformed
into the global coordinate frame. This offers an advantage
over the superellipsoid where determining which of the six
directions to use as the pose estimate is a non-trivial task.

Finally, we experimented with fitting a plane because we
noticed that the superellipsoid and paraboloid can occasion-
ally be skewed by outliers in the point cloud. A plane is
a simpler mathematical model that would be less prone to
over-fitting. We perform the fitting by applying principal
component analysis to the petal point cloud and selecting
the eigenvector corresponding to the smallest eigenvalue.
This eigenvector represents the direction with the smallest
variation in the point cloud data and thus it would be
parallel to the normal of the best-fit plane. Then, just as
for the superellipsoid estimate, the pistil of the flower is
used to choose the correct direction between the two possible
normals (180 degrees apart) to the plane.

For illustration, Fig. 6 shows an example result of fitting
all three quadrics onto a petal point cloud. Colored arrows
represent the respective three pose estimates. The black
arrow denotes ground truth pose.

III. RESULTS

We used the customized FarmBot platform to autonomously
acquire seven scans of flowering strawberry plants. This
section outlines the process of deriving ground truth and
estimated flower poses from scans from our methodology.

A. Ground Truth Specification of Flower Pose

We annotate by hand the “ground truth” pose of each flower
in the scans using AWS SageMaker Ground Truth [35]
software. This is done by adding oriented bounding boxes
with arrows on discerned flowers, as seen in Fig. 7. Cases
which cannot be labeled include concealed flowers or ones
with heavily distorted corollas, which resulted from lower
quality point clouds due to the Arducam’s low resolution
(read section III-B for improvements). We estimate 5° of
human error in ground truth pose values. The number of
flowers labeled with the ground truth pose for each plant
scan is shown in the second column of TABLE I.

B. Flower Pose Estimation Results

We estimate the pose for a flower using the three quadric
surfaces described in section II.E. only if it has been detected



Fig. 7: Example of ground truth flower pose labeling using
AWS SageMaker Ground Truth.

using the Translating Occupancy Grid Method and has been
assigned a ground truth pose value. The results appear in
TABLE I. Overall, 80.3% of ground truth flowers were
detected using our method. An edge case occurred with Plant
ID 6, where only 50% of the flowers were detected. This is
because, during the object detection phase, the model failed
to detect some of the flowers due to merging with leaves or
being occluded.

We find that the plane performs the best with a mean
error of 7.7 degrees, which is a satisfactory result given
that the ground truth itself could be off by 5 degrees due
to human error. There are two main sources of error, both
of which are caused by poor point clouds. Firstly, the petals
can curve downward and fuse with the stem, resulting in
a mismatch with the mathematical model of a flat plane.
Secondly, the white flower petals can fuse with the pistil and
take on a yellow color, causing it to be filtered out during
petal extraction.

The superellipsoid (the next best method) suffers from the
same problems as the plane. This shape also occasionally
does not fit properly to the petal point cloud, resulting in
significant pose errors. We hypothesize that this is because
the algorithm gets stuck in a local minima since the objective
function in the least-squares optimization is non-convex.

The paraboloid has the worst performance because it is
based on the assumption that the flower petals curve upward.
However (as mentioned previously) a number of flowers have
downward curving petals, resulting in a pose estimation that
can be 180° off from the ground truth pose. The error in these
cases is very large and explains the large disparity between
the mean and the median.

There are a few cases where a flower is detected by
the Translating Occupancy Grid Method but has not been
assigned a ground truth pose, labeled as ‘No. Extra’ in
TABLE I. This is because these particular poses are difficult
to manually determine due to a deformation in the point
cloud or occlusion from foliage, but is detected by the
algorithm since there remains a resemblance to a strawberry
flower. The cases where a detected “flower” is actually a leaf
or part of another flower that has already been detected are

Plant
ID

GT Flowers
Found
(%)

No.
Extra

FP Super-
ellipsoid
error

Para-
boloid
error

Plane
error

1 7 6 (85.7) 1 0 14.7° 34.7° 5.4°
2 10 10 (100) 2 1 12.1° 60.5° 9.5°
3 11 9 (81.8) 3 2 26.7° 10.2° 8.0°
4 7 6 (85.7) 5 0 19.5° 30.2° 9.6°
5 9 7 (77.8) 2 0 42.0° 120.3° 7.4°
6 10 5 (50) 4 1 8.0° 172.0° 7.5°
7 7 6 (85.7) 6 0 7.5° 7.9° 4.6°
Total 61 49 (80.3) 23 4 - - -
Mean - - - - 19.3° 57.9° 7.7°
Med - - - - 8.9° 11.8° 5.9°
Std
Dev

- - - - 33.6° 73.3° 5.8°

TABLE I: Flower pose estimation errors for each plant scan
captured using the FarmBot platform. GT: ground truth. FP:
false positives.

labeled as ‘FP’ (false positives) in TABLE I.
Cameras aren’t perfect. Since many of our errors arise

from the relatively poor quality of scans obtained using
the Arducam, we manually captured an eighth scan using
a smartphone with a higher resolution rear camera that
produced a 3D model with 125,000 vertices. This is about
twice the resolution of the autonomous FarmBot scans. The
improved results for this scan are presented in TABLE II.
Note the significantly higher number of point cloud flowers
that can be labeled with a ground truth pose, due to better
3D mesh models that facilitate manual pose labeling.

Plant
ID

GT Flowers
Found
(%)

No.
Extra

FP Super-
ellipsoid
error

Para-
boloid
error

Plane
error

8 19 15 (78.9) 0 2 17.5 41.6 6.4

TABLE II: Mean flower pose estimation errors for the plant
scan captured using a smartphone.

IV. CONCLUSIONS AND FUTURE WORK

Through automated data acquisition using a customized
FarmBot, point cloud reconstruction by Polycam, and ap-
plication of our novel method of extracting flowers from
point clouds, we have successfully developed a pipeline to
estimate flower pose that finds approximately 80% of flowers
scanned using the gantry-style robotic platform. The mean
flower pose error for pollination is 7.7 degrees, which is
sufficient for robotic pollination and rivals previous results
such as Ci et al. [36], Sun et al. [37] and Luo et al. [38].

Using a gantry robot places limits on plant height and
farm area, making our system most suitable to smaller urban
farms. The parameters for the Translating Occupancy Grid
Method are also specific to strawberry flowers and would
have to be tuned for other kinds of flowers.

As for future work, we should be able to increase the
percentage of flowers found by using semantic segmentation
instead of object detection. This is because object detection
yields a 2D rectangular bounding box, which includes un-
wanted noise artifacts whereas semantic segmentation does
not. Furthermore, using an RGB-D instead of an RGB
camera would require fewer images to generate a good 3D
model of the plant, speeding up the data acquisition step.
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